Chapitre 10 : Suites numériques

Exercice 1: Parmi les suites de termes généraux suivants, lesquelles sont bornées?

$$a_n = \frac{3}{2^n};$$
 $b_n = ((-1)^n + 1)n;$ $c_n = \frac{n-1}{2n+1}.$

Exercice 2: Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique réelle et soit $\ell\in\mathbb{R}$. Écrire à l'aide de quantificateurs les propriétés suivantes :

- 1. la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers ℓ ;
- 2. la suite $(u_n)_{n\in\mathbb{N}}$ ne diverge pas vers $+\infty$;
- 3. la suite $(u_n)_{n\in\mathbb{N}}$ converge;
- 4. la suite $(u_n)_{n\in\mathbb{N}}$ diverge.

Exercice 3: Déterminer la nature et la limite éventuelle des suites de termes généraux suivants:

$$a_n = \frac{2n+1}{3n-5}; \quad b_n = \frac{-4n^2+3n+3}{-2n+3}; \quad c_n = \frac{4^n-3^n}{4^n+3^n}; \quad d_n = \sqrt{n+1} - \sqrt{n};$$
$$e_n = \frac{\sin(n)}{n+(-1)^{n+1}}; \quad f_n = \frac{n-(-1)^n}{n+(-1)^{n+1}}; \quad g_n = \frac{\mathbf{e}^n}{n^n}.$$

Exercice 4: Soit $n \in \mathbb{N}$, on considère l'équation d'inconnue réelle x:

$$(E_n): x \ln(x) = n$$

- 1. Montrer que (E_n) admet une unique solution sur $[1; +\infty[$ notée u_n .
- 2. Montrer que (u_n) est croissante et que $u_n \leq n$ pour tout $n \in [3; +\infty[$.
- 3. En déduire que $u_n \geqslant \frac{n}{\ln(n)}$ pour tout $n \in [3; +\infty[$.
- 4. Conclure quant au comportement asymptotique de la suite (u_n) .

Exercice 5:

- 1. Montrer qu'une suite divergente de limite $+\infty$ est minorée.
- 2. Que peut-on dire concernant la limite d'une somme d'une suite bornée et d'une suite qui diverge vers $-\infty$? Démontrez-le.

Exercice 6: Soit $(u_n)_{n\in\mathbb{N}}$ une suite périodique, c'est-à-dire qu'il existe $q\in\mathbb{N}^*$ tel que $\forall n \in \mathbb{N}, \ u_{n+q} = u_n$.

- 1. Montrer que (u_n) est bornée.
- 2. Montrer que (u_n) admet une limite si et seulement si (u_n) est constante.

Exercice 7: Montrer qu'une suite d'entiers qui converge est stationnaire.

Exercice 8: Étudier la convergence des suites de termes généraux suivants :

$$u_n = \frac{\operatorname{Arctan}(\operatorname{ch}(\cos(n)))\mathbf{e}^n}{n} \quad 4. \ u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

1.
$$u_n = \frac{\operatorname{Arctan}(\operatorname{ch}(\cos(n)))\mathbf{e}^n}{n}$$
 4. $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$
2. $u_n = \frac{\cos(n) - 2}{\operatorname{Arctan}(\mathbf{e}^{-n})}$ 5. $u_n = \frac{\lfloor na \rfloor}{n}$ pour $a \in \mathbb{R}$.

3.
$$u_n = \frac{n!}{n^n}$$
 6. $u_n = \frac{\lfloor na \rfloor}{a}$ pour $a \in \mathbb{R}^*$.

Exercice 9: Soit $n \in \mathbb{N}$. On note $I_n = \int_0^1 x^n e^x dx$.

- 1. Étudier les variations de la suite $(I_n)_{n\in\mathbb{N}}$, puis montrer qu'elle converge.
- 2. À l'aide d'une intégration par parties, obtenir une relation entre I_{n+1} et I_n , puis en déduire la limite de $(I_n)_{n\in\mathbb{N}}$.
- 3. Retrouver cette limite à l'aide du théorème des gendarmes.

Exercice 10: On pose $A = \left\{ \frac{2^n}{2^n - 1}, n \in \mathbb{N}^* \right\}$, Montrer que A est non vide et bornée, puis déterminer la borne inférieure et la borne supérieure de A.

Exercice 11: On s'intéresse aux ensembles suivants :

$$A = \left\{ \frac{x^2 + 2}{x^2 + 1}, \ x \in \mathbb{R} \right\} \text{ et } B = \left\{ \frac{nm}{(n+m)^2}, \ (n,m) \in (\mathbb{N}^*)^2 \right\}.$$

Déterminer, s'ils existent, le maximum, le minimum et les bornes supérieure et inférieure de A et de B.

Exercice 12: [*] Soient $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ deux suites réelles telles que

$$\forall n \in \mathbb{N}, \ w_n = \frac{u_0 + u_1 + \dots + u_n}{n+1}$$

- 1. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est bornée alors $(w_n)_{n\in\mathbb{N}}$ est bornée. Que pensez-vous de la réciproque?
- 2. Montrer que si $(u_n)_{n\in\mathbb{N}}$ converge alors $(w_n)_{n\in\mathbb{N}}$ converge vers la même limite.

Que pensez-vous de la réciproque?

3. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est croissante alors $(w_n)_{n\in\mathbb{N}}$ est croissante.

Exercice 13: Étudier les couples de suites de termes généraux suivant :

- 1. $\forall n \in \mathbb{N}, \ u_n = 2^n \sin\left(\frac{\theta}{2^n}\right) \text{ et } v_n = 2^n \tan\left(\frac{\theta}{2^n}\right) \text{ pour } \theta \in]0, \frac{\pi}{2}[.$
- 2. $\forall n \in \mathbb{N}^*, \ u_n = \left(1 + \frac{1}{n}\right)^n \text{ et } v_n = \left(1 + \frac{1}{n}\right)^{n+1}$

Exercice 14: Pour tout $n \in \mathbb{N}^*$, notons $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

- 1. Démontrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.
- 2. Que peut-on en déduire pour la suite (S_n) ?

Exercice 15: Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que la suite $(H_n)_{n\in\mathbb{N}^*}$ est croissante.
- 2. Montrer que $\forall n \in \mathbb{N}^*, \ H_{2n} H_n \geqslant \frac{1}{2}$.
- 3. En déduire que $\lim_{n\to+\infty} H_n = +\infty$.

Exercice 16: Montrer que la suite $(\cos(n))_{n\in\mathbb{N}}$ diverge.

Exercice 17: Soient $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ deux suites réelles telles que $u_0=1,\ w_0=2$ et $\forall n\in\mathbb{N},\ u_{n+1}=3u_n+2w_n$ et $w_{n+1}=3w_n+2u_n$

- 1. Calculer u_1, w_1, u_2 et w_2 .
- 2. Montrer que la suite $(u_n w_n)_{n \in \mathbb{N}}$ est constante.
- 3. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est arithmético-géométrique.
- 4. En déduire le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ puis de $(w_n)_{n\in\mathbb{N}}$.

Exercice 18: Déterminer des expressions explicites des suites suivantes :

- 1. $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 1$.
- 2. $u_0 = 1$, $u_1 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 4u_{n+1} 4u_n$.
- 3. $u_0 = 1$, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} u_n$.

Exercice 19: On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} x_0 = 1 \\ \forall n \in \mathbb{N}, \ x_{n+1} = \frac{x_n(1 + x_n)}{1 + 2x_n} \end{cases}$$

- 1. Montrer que pour tout $n \ge 1$, $0 < x_n < 1$.
- 2. Montrer que $(x_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 20: Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et la relation de récurrence $u_{n+1}=\operatorname{sh}(u_n)$ pour tout $n\in\mathbb{N}$.

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, puis déterminer sa limite.

Exercice 21: Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et la relation de récurrence : $u_{n+1}=1+\frac{1}{1+u_n}$ pour tout $n\in\mathbb{N}$.

- 1. Montrer $(u_n)_{n\in\mathbb{N}}$ est bien définie et qu'elle est bornée.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge, et calculer sa limite.